Available Energy Harvesting Technologies/Methodologies
Electromagnetic energy harvesting technology captures the mechanical energy of vehicles on the roadways and generates electricity based on Faraday’s law. In practice, mechanical energy from a moving vehicle applies a force/displacement to a mechanical system that leads to relative movements between a magnet and coil, thereby generating electrical power. These mechanical systems can be divided into different mechanisms such as rack and pinion, cam and arm, hydraulic, linear generator, and chain-and-sprocket.
Piezoelectric materials have shown potential in harvesting mechanical energy from roadway pavements due to their simplicity and high-power density. Piezoelectric effect is generating electric energy in response to an applied stress/strain, and vice versa. The electrical energy stored in piezoelectric materials is released by connecting their poles to an external resistance. Piezoelectric materials are available in nature as a single crystal, such as quartz. There are also several synthetic piezoelectric materials, including the two most common: lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF). The piezoelectric elements are encased in a properly designed enclosure and installed in the pavement structure, near the surface, to capture stresses from passing vehicles.
Some piezoelectric materials have pyroelectric ability. Pyroelectricity is the ability of materials to convert thermal energy to electrical energy when heated or cooled. The pyroelectric current is directly proportional to the rate of change in temperature. Pyroelectric materials are a subset of piezoelectric materials; that is, some of the piezoelectric materials exhibit pyroelectric properties as well (e.g., PZT and PVDF). All the research that has focused on the pyroelectric effect has considered it part of a hybrid energy harvesting technology that combines pyroelectric and piezoelectric effects.
Another method of harvesting roadway energy is by collecting and conveying heat through a network of fluid pipes embedded into the pavement structure. Generally, this technology is based on exchanging the heat between the pavement and fluid in pipes embedded into the pavement, and storing the harvested heat in a suitable heat sink. These systems are often referred to as asphalt solar collectors (ASCs). Applications of this technology include melting pavement surface ice in the winter and reducing pavement surface temperature from hot pavement in the summer. Another application of these systems is utilizing the warm fluid to heat buildings.
A variation on systems that use a liquid fluid as the heat exchange medium are systems that utilize air. Heat harvesters using air as the exchange medium consist of pipes capable of circulating air embedded into the pavement surface. The air either absorbs or emits heat from/to the pavement surface depending on the temperature differential. Air circulation may be possible through convection, so there is no need for a circulating pump. Such systems may be able to use the air flow to activate a wind turbine and produce electricity.