A trailer (top), operable by remote, was built to carry the autoflagger rig (above).
Nothing that can’t be fixed
After final delivery of the device to MnDOT in May 2016, plans were made to test the device in the field. However, due to scheduling and operational issues that occurred, initial field testing was not completed in 2016. Operational issues were experienced that delayed the initial field testing. In June 2016, the on-board batteries failed and were replaced. The battery failure was possibly due to the amount of time that had lapsed since the device had last been charged and used. Storing the device in a location where the batteries can be continuously charged and maintained would eliminate this issue.
In addition, other replacement parts were needed, including a new control board. While waiting for the parts, the control box filled with water during a rain event, resulting in additional damage. The device was returned to DJ Products Inc. in October 2016 for repairs. To avoid future water damage, the seals for the control cover were improved and drain holes were installed in the control box to allow water to escape.
On Feb. 13, 2017, the device was used for flagging on a roadway crack-sealing project on TH 71 south of Sauk Centre, Minn. The device operated as expected and was used for about an hour on the project. Due to the type of crack sealing being performed, the crew was required to move at a faster rate than the device could accommodate. The required speed resulted in some drivability issues with oversteer while moving against traffic. After one hour of use, the device was removed from the project.
Being able to steer
The moving AFAD device is still being tested by MnDOT. Further modifications are being investigated, including enhancement of the battery pack to allow for longer operating times. Steering and controller design also will likely be modified. Currently, the moving AFAD must be steered from its rear traffic-facing axle, forcing the remote operator to guide it in a manner similar to backing up a boat trailer. Redesigning the device to be steerable from the traffic-leading end of the vehicle would allow for more intuitive control. MnDOT personnel also would like to see the device’s controller integrated with the sign controller, eliminating the need for two remote controls.
The full study report can be found at:
http://dotapp7.dot.state.mn.us/projectPages/pages/projectDetails.jsf?id=39357&type=DOCUMENT.
About The Author: Terhaar is a principal, traffic engineering, for Wenck, Maple Plain, Minn.